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MULTISIGNAL MINIMUM-CROSS-ENTROPY SPECTRUM ANALYSIS
WITH WEIGHTED PRIORS

INTRODUCTION

Multisignal minimum-cross-entropy spectrum analysis (MCESA) is a method for estimating the

power spectrum of one or more signals when a prior estimate for each is available and new information

is obtained in the form of values of the autocorrelation function of their sum [1]. The resultant esti-
mates are the solution of a constrained minimization problem: they are consistent with the autocorrela-
tion information and otherwise as similar as possible to the respective prior estimates in a precisely
defined information-theoretic sense. Multisignal MCESA [1] is a generalization of MCESA [1,2] and
reduces to it in the special case when the number of signals is one. Multisignal MCESA can be derived
[1,2] as an application of the principle of minimum cross entropy [3-5] or, alternatively, by minimizing
a sum of Itakura-Saito distortions [6].

Multisignal MCESA applies when, for instance, one obtains autocorrelation measurements for a
signal corrupted by independent additive noise, and one has some prior knowledge concerning the spec-
tra of both the uncorrupted signal and the noise. The results are posterior signal- and noise-spectrum
estimates that take both the prior estimates and the autocorrelation information into account.

The multisignal MCESA procedure presented in Ref. I gives the same weight to each of the prior
spectrum estimates-they are all treated on the same footing. However, in situations that arise in prac-
tice, one may have more reliable information about the spectra of some of the signals than about the
others. Consider a speech signal corrupted by additive background noise; suppose the background is
more nearly stationary than speech. If it is possible to detect pauses in the speech reliably, then meas-
urements of the sum signal during a speech-free interval will yield an estimate of the noise spectrum
that can serve as a prior noise estimate during an interval when speech is present. The result may well
be a better prior estimate for the noise spectrum than any prior estimate that can be obtained for the
speech spectrum. Alternatively one might be able to obtain a good estimate of the noise power spec-
trum by conventional spectrum analysis of a signal from a microphone exposed to the noise but not the
speech. In both cases it would be desirable to give greater weight to the noise prior than to the speech
prior in deriving posterior spectrum estimates. In other situations it might be desirable to rely more
heavily on the speech prior than on the noise prior.

It is furthermore possible to have prior information about the spectrum of an individual signal
that is more reliable in some frequency ranges than in others. Thus in some situations, for example,
one might even wish to give greater weight to the noise prior at high frequencies and to the speech
prior at low frequencies.

We present in this report a generalization of multisignal MCESA that allows a frequency-

dependent weight to be attached to each prior estimate. Aside from the weights, inputs to the pro-
cedure are the same as to multisignal MCESA: a prior spectrum estimate for each signal and autocorre-
lation values for the sum. The results again are posterior spectrum estimates that are consistent with
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the given autocorrelation information. When all of the weights are constant and equal, the results are
identical to those from multisignal MCESA. In general, increasing a weighting parameter tends to bring
the corresponding posterior spectrum closer (in the sense of Itakura-Saito distortion) to the correspond-
ing prior spectrum at the expense of increasing the distortions for other prior-posterior pairs. This is
demonstrated in the fourth section of this report, where it is also shown that the posterior spectra can
be obtained by constrained minimization of a weighted sum of Itakura-Saito distortions. In the
remainder of this section, we describe the multisignal MCESA method of [1]. In the second section of
this report, we present the generalized method and the heuristic arguments that first led us to the gen-
eralization. In the third section we give a derivation based on minimizing a weighted sum of cross
entropies, and in the fifth section we rework a numerical example from Ref. 1.

Multisignal MCESA estimates the power spectra Si (f) of a number K of independent, real, band-
limited, stationary processes (signals) with bandwidth W, given a prior estimate Pi for each Si, and
given in addition the values Rrt - RSOI(tr) of the autocorrelation function of the sum of the processes
at finitely many lags tr, r = 0 , ... , M The prior estimates Pi may be thought of as the best guesses
at S, we could make in the absence of the autocorrelation data. Under the assumption of indepen-
dence, we write Rtot as a sum of autocorrelation functions R, of individual processes:

K
Rtol(t) = z j()i-I

where

R,(t) = 2f WS(f) cos 2.rft df.

The multisignal MCESA estimator has the form [11

1 QI(f) 1 +2rO21Tfr (1)
7U + ,2,6, cos 2irft,

where the ,B, are chosen so that the Qj are consistent with the given autocorrelation values:

r-22f 0 Q,(f) cos 2rr ft. df. (2)
i-1

The parameters 3,B are Lagrange multipliers that arise in the solution of a minimization problem with
Eq. (2) as constraints. The minimization problem can be formulated as an application of the principle
of minimum cross entropy or, alternatively, as the minimization of the sum

zfJWQWT _f log Q, V - 1I df (3)

of Itakura-Saito distortions.

THE METHOD

To use the multisignal MCESA estimate with weighted priors, we must supply not only autocorre-
lation values Rt"t for the sum of the signals and prior estimates P, for the individual signals, but also a
weight w; associated with each Pi. The w; may be simply K positive constants or, more generally, K
functions w,(f) of frequency. The estimate has the form

Qi (f) = 1 (4)

T T + - 2/,r cos 27rftr

where the parameters fPr are to be chosen so that the constraints of Eq. (2) are satisfied.
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We first arrived at something like Eq. (4), with frequency-independent weights, by considering a
somewhat artificial situation. Suppose that each signal s, is the sum of ni independent signals sLj with
spectra Sij, and that for each i we have equal prior estimates PF/ni for all the Sij, j= 1, . . ., ni. Then
we might consider ni to be a measure of the quality or reliability of Pi as an estimate of Si= LSij, by

analogy with the fact that the sum of n independent random variables distributed identically with x/n
has a smaller variance (by a factor of n) than a single random variable x. The MCESA posterior esti-
mates Q~j for Sij in this situation are given by

Qvj ( W = 1 1

Q~ P(f)/ + 2,1r cos 27rft,

where the 13, are chosen to satisfy constraints

K ni W
Itot = 2 A J Qj(f) cos 2rftr df (5)

We consequently obtain
ni

Q,(f ) Q1 f = n1Qj(f)
i-i

1 1 M ' (6)

A;+-S 2d cos 2ir ft.

as a reasonable posterior estimate of Si (f). When Qj is given by Eq. (6), the constraints of Eq. (5)
become equivalent to those of Eq. (2).

The posterior spectra Qj are not altered if the n, are replaced with a proportional family of
numbers w,, since a common factor can be absorbed into the PI,. Furthermore, there does not seem to
be much point to requiring the ratios of the w, to be rational-we regard the model of Si as a sum of
components sj as being suggestive, but not necessarily to be taken literally. We therefore replace n, in
Eq. (6) with arbitrary positive numbers w, and obtain

Qi f) =1(7)

11 M
+ _ X 213, cos 2lrftr

7 Wi r-I

Allowing the weights to be frequency-dependent can be motivated heuristically by considering
another somewhat artificial procedure-converting a single-signal problem into a multisignal problem.
Assume we are given autocorrelation values R. and a prior estimate P for the spectrum S of a single
signal s. Suppose we arbitrarily partition the band of frequencies from 0 to W into two bands B1 and
B2 and write s as a sum

s(t) = sI(t) + s2(t)

of two signals whose spectra SI and S2 are confined to the respective bands B1 and B2

s(f), f E Si

r = 1, 2. We solve the two-signal MCESA problem with autocorrelation values given by RtOt= RI,
prior estimates PI, P2 given by

Psi) =p(f), f E B'I0(f) f o,
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and frequency-independent weights w,. Strictly speaking, Eq. (4) is ill-defined where Pi(f) = 0; how-
ever, there is no problem with the following alternative form,

1 + -Pi(f) A 2,6, cos 27rft,
Wi r1

The sum Q of the posteriors satisfies

Q(f) = Q1(f) + Q2 (f)
=Qi(f), f E B1

PQ2 (f), f E B2 '

and therefore

Q rf) 1
+ _ 2,, cos 27rft,

when f EB,, (i = 1, 2). With equal weights w =W2 = 1, we thus merely recover the single-signal
MCESA result in a roundabout way. However, we may write this as

QV 1) + 1 1 (8)

r-m~~~~~~~~~~~~fl, co2s, 7O 2rft,

where, with general weights,

1wi, f E B

-w(fi) _W 2, f E B2

We could equally well have partitioned the frequencies into any number of sets B,, not merely 2; from
that point it is an obvious step to consider Eq. (8) with weights w(f) not restricted to a finite number
of values w1. We are thus led to a single-signal version of Eq. (4). The generalizations that lead from
the unweighted multisignal MCESA estimate Eq. (1) to Eq. (7) and Eq. (8) combine to yield Eq. (4) in
full generality.

DERIVATION

We collect here some notation and results from Ref. 1. For the K signals, we use discrete-
spectrum approximations

s,(t) = 2, (a,,k cos 2 7Tfkt + bik sin 2irfkt),
k-i

(i = 1, ... , K). The fk are nonzero frequencies, not necessarily uniformly spaced, and the aik and
b k are random variables. We define random variables

Xik =T (a k + b,,k)

representing the power of process si at frequency fk, and we consider their joint probability density
qt(x), where x = (xl, . . . ,xk) and xi = (xi, . . . ,XiN). Assuming prior estimates Pik= Pi(fk) of the
power spectra of the s,, we write prior estimates p of qt in the form

K N
p(X) = f I Pik(Xik)

i=1 k=1
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where

Pik _~ik

Autocorrelation values R,.tot = R (t,) for the sum 01 the s, are assumed known at lags t,
(r = 0, ... , M) with to = 0. (In Ref. 1, R. is written in place of Rtot.) We write these as linear con-
straints

R,' = A, f, Jbcrkxjkqt(x) dx (9)
i=1 k=1

on expectation values of qt, where

crk = 2 cos 2 rfkt,.

We obtain a posterior estimate q of qt by minimizing the cross entropy

H(q, p) = Cq log q (dx

subject to the constraints (Eq. (9) with q in place of qt); the result has the form
K N

q (x) = 11 H1 qik(xik), (10)
i-k k-i

where the qik are related to the posterior estimates

Qik= Qi(fk) =f xkq(X) dx
of the power spectra of the s, by

qik(xik) - i exp Xik (11)

We find a discrete-frequency version of Eq. (1),

Qik= 1 M (12)I +, ItCrk
Fik r-I

wnere the Or, must be chosen so that
K N

C~k Qik= R tot
i-I k-I

is satisfied.

Equation (10) states the posterior independence of the xik We would have obtained the same
results Eq. (11), Eq. (12) if we had assumed Eq. (10) from the start, choosing the qik to minimize
H(q, p) subject to the constraints with q expressed in the form of Eq. (10). For such densities q, we
have

K N
H(q, p) = z H(qjk, Pik), (13)

i=1 k=1

and the constraints assume the form
K N

A ,Jcrkxikqik(xik) dxik = R tot. (14)
i=l k=1
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Thus multisignal MCESA (without weighting factors) can be obtained by minimizing Eq. (13) subject
to the constraints of Eq. (14). Our generalization is to replace the right-hand side of Eq. (13) with a
weighted sum

K N K N qi(Xik)
_ I Wfik H(qik, pi k = A f I wikfqik(xik) log dxik.

i I k- 1 i-1 k=1 Pik Xik

This is to be minimized with respect to variations in the qik subject to the constraints Eq. (14)-
together, of course, with the normalization constraints

fIq ik(xik) &cik=, (15)

The result is

qik(xik) = Pik(X k) exp k - I ,.CrkXik],Wik Wik j

where the /3, and the Xik are Lagrange multipliers corresponding to the constraints Eqs. (14) and (15).
From this it follows that Eq. (11) holds with

Qik = fxikqikxk) dxik

1 1 ; (16)

1 Y, P3Ck'
-)k Wik ,.I

the argument is the same that established (13) and (14) from Eq. (11) in Ref. 2.

Passing to the continuous-frequency case, we write the weights as w,(f) and replace Eq. (16) with
Eq. (4).

PROPERTIES

We begin with two trivial observations. The first is that, as noted in the second section of this
report, the weights wi may be scaled by a common factor without affecting the results. The second is
that the present method does indeed reduce to multisignal MCESA when the wi are all constant and
equal.

Next we show that the posterior spectra Q1 can be obtained by minimizing the sum

Wi (lQl(f) --log Q(f) -11 df (17)
KfW ~~TT-Pi-f

of weighted Itakura-Saito distortions subject to the constraints of Eq. (2). We form the expression

K W -log Q -1M f0 Wi () log - 1 df + / 23,S Q((f) cos 2ir ft,. df

involving Lagrange multipliers /3,, and we set its variation with respect to Q1(f) equal to zero:

Wi V)|- _ } + z 23,. cos 27rft, = 0.

This implies Eq. (4). We obtain a minimum of Eq. (17) since the second variation, wJ(f)/Q 1 (f) 2 , is
positive.

6
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Finally, we justify the claim that increasing one of the weights tends to decrease the distortion
between the corresponding prior and posterior spectra while increasing the distortions for other prior-
posterior pairs. We write D(Qi,P,) for the Itakura-Saito distortion of Pi with respect to Q, (the integral
in Eq. (3)). We first consider frequency-independent weights. Let w'i be the result of increasing w1 for
a particular value a of i and leaving the rest of the weights the same:

W a > Wa,

Wi = Wi Gi of a).

Let the use of weights w'i result in posterior spectra Q'1. We will show that

D(Q'a,Pa) < D(Qwpa), (18)

and that

D(Q'i,PF) > D(Qi,PF) (19)

for at least one value of i (necessarily different from a).

Now Q, minimizes

z wD(Qi,PF)

subject to the constraints (2) while Q'1 minimizes

ID wD(Q'i,Pi)
subject to the same constraints (with Q'i in place of Q,). It follows that

IwD(QiPi) < wiD(Q'iPi) (20)

and

IWigD (Qi,Pi) > IW'iD (Q'i,Pi) . (21)
I i

Subtracting Eq. (20) from Eq. (21) yields

(WIa - Wa)D(QaPa) > (Wa - wa)D(Q'aPa).

Since (W'a - wa) is positive, we have Eq. (18). But it follows from Eq. (20) that Eq. (19) holds for
some I

A similar argument establishes a somewhat similar result for frequency-dependent weights. For
simplicity we state this for the single-signal case. Let w' be the result of increasing w on some band B
of frequencies:

w'(f) > w(f), fEB

O'f) = w (f), f¢ B.
Let the use of w and w' result in posterior spectra Q and Q', respectively. Then

f B ' | <F- log _ |II d < a, IQ(f) -log Q(f- - 1 1 df7T'- d B'd

for some B' C B, while the reverse inequality holds for some B" disjoint from B'. That is, increasing
the weight on B decreases the distortion on some subset B' of B while increasing the distortion else-
where.

7
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EXAMPLE

In this section we take up a two-signal numerical example that was used in Ref. 1 to illustrate
multisignal MCESA. We use the same prior spectra and the same autocorrelation data, and we show
plots of the posterior spectra that result from various choices of the weights. The autocorrelation data
were derived from the sum of a pair of assumed original spectra Ss and SB. (In Ref. 1 the indices
stood for signaland background) These spectra each have a sharp peak at a single frequency. They are
shown in Fig. 1. The priors Ps and PB were taken to be respectively flat and identical to SB. They are
shown in Fig. 2, which corresponds to Figs. 3 and 2 of Ref. 1. Figures 3-7 show posterior spectra Qs
and QB for five choices of constant weights: the ratios Ws/WB are 90/10, 75/25, 50/50, 25/75, and
10/90. The spectra in Fig. 5, the equal-weight case, are identical to those in Figs. 6 and 5 of Ref. 1. In
each case there is a sharp peak in QB, corresponding to the peak that is in SB and PB. In each case
there is a second peak in one or both of the posteriors, corresponding to the peak that is in Ss but in
neither prior; its appearance in the posteriors is due entirely to information contained in the autocorre-
lation data. In Fig. 3, for which the prior Ps is heavily weighted, the posterior Q5 is approximately flat,
resembling the prior, and most of the power in the second peak is attributed to QB. In Fig. 7 PB is the
heavily weighted prior; most of the power in the second peak is attributed to Qs, whose corresponding
prior received a small weight indicating prior uncertainty. The figures between show a progression from
the one extreme to the other as the weight shifts.
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DISCUSSION

The generalization of multisignal MCESA we have presented allows one to take into account the
possibility that prior spectrum estimates are not equally reliable for all signals or in all frequency ranges
for the same signal. One can express greater or less confidence or "degree of belief' in the prior esti-
mates for the various signals in various frequency ranges by assigning greater or smaller values to the
corresponding weights. Roughly speaking, increasing a weight tends to bring the corresponding poste-
rior closer to the prior. This statement is made more precise in the results proved in the fourth section
of this report and is illustrated in the examples.

Computer programs for multisignal MCESA spectrum estimation with weights may be found in
the appendices of Ref. 7.

For a single signal, somewhat different considerations have led Chu and Messerschmitt [81 to the
idea of minimizing a weighted Itakura-Saito distortion. However, their procedure involves minimizing
the integral in Eq. (17) by varying P rather than Q. Chu and Messerschmitt view the frequency-
dependent weight as a means for taking into account the varying perceptual importance of various fre-
quency ranges of a speech signal. They consider the weighted distortion between a true spectrum and
an all-pole estimate, rather than that between a posterior estimate and a prior estimate, and they thus
obtain a new method for choosing all-pole estimates of the usual form, rather than an estimate in a new
form such as Eq. (4).
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